电脑故障问答网

 找回密码
 立即注册
查看: 108|回复: 1

split后For 'Mul', x.shape and y.shape are supposed to …

[复制链接]

1

主题

1

帖子

3

积分

新手上路

Rank: 1

积分
3
发表于 2022-9-21 15:59:52 | 显示全部楼层 |阅读模式
1 报错描述

1.1 系统环境

Environment(Ascend/GPU/CPU): GPU-GTX3090(24G)
Software Environment:
– MindSpore version (source or binary): 1.7.0
– Python version (e.g., Python 3.7.5): 3.8.13
– OS platform and distribution (e.g., Linux Ubuntu 16.04): Ubuntu 16.04
– CUDA version : 11.0
1.2 基本信息

1.2.1脚本

此代码是ConvLSTM从PyTorch迁移到MindSpore的一部分,下面为报错部分
split = ops.Split(1, 2)
output = split(x)1.2.2报错

部分个人信息做遮挡处理
Traceback (most recent call last):
  File "main.py", line 195, in <module>
    train()
  File "main.py", line 142, in train
    loss = train_network(data, label)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 612, in __call__
    raise err
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 609, in __call__
    output = self._run_construct(cast_inputs, kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 429, in _run_const
ruct
    output = self.construct(*cast_inputs, **kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/wrap/cell_wrapper.py", line 373,
in construct
    loss = self.network(*inputs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 612, in __call__
    raise err
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 609, in __call__
    output = self._run_construct(cast_inputs, kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 429, in _run_const
ruct
    output = self.construct(*cast_inputs, **kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/wrap/cell_wrapper.py", line 111,
in construct
    out = self._backbone(data)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 612, in __call__
    raise err
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 609, in __call__
    output = self._run_construct(cast_inputs, kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 429, in _run_const
ruct
    output = self.construct(*cast_inputs, **kwargs)
  File "/home/xxxlab/zrj/mindspore/ConvLSTM-PyTorch/conv/model.py", line 31, in construct
    state = self.encoder(input)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 612, in __call__
    raise err
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 609, in __call__
    output = self._run_construct(cast_inputs, kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 429, in _run_const
ruct
    output = self.construct(*cast_inputs, **kwargs)
  File "/home/xxxlab/zrj/mindspore/ConvLSTM-PyTorch/conv/encoder.py", line 42, in construct
    inputs, state_stage = self.forward_by_stage(
  File "/home/xxxlab/zrj/mindspore/ConvLSTM-PyTorch/conv/encoder.py", line 35, in forward_by_stage
    outputs_stage, state_stage = rnn(inputs, None)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 612, in __call__
    raise err
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 609, in __call__
    output = self._run_construct(cast_inputs, kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/nn/cell.py", line 429, in _run_const
ruct
    output = self.construct(*cast_inputs, **kwargs)
  File "/home/xxxlab/zrj/mindspore/ConvLSTM-PyTorch/conv/ConvRNN.py", line 61, in construct
    combined_2 = P.Concat(1)((x, r * htprev))  # h' = tanh(W*(x+r*H_t-1))
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/common/tensor.py", line 278, in __mu
l__
    return tensor_operator_registry.get('__mul__')(self, other)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/ops/composite/multitype_ops/_compile
_utils.py", lin
e 101, in _tensor_mul
    return F.mul(self, other)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/ops/primitive.py", line 294, in __ca
ll__
    return _run_op(self, self.name, args)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/common/api.py", line 90, in wrapper
    results = fn(*arg, **kwargs)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/ops/primitive.py", line 754, in _run
_op
    output = real_run_op(obj, op_name, args)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/ops/primitive.py", line 575, in __in
fer__
    out[track] = fn(*(x[track] for x in args))
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/ops/operations/math_ops.py", line 78
, in infer_shap
e
    return get_broadcast_shape(x_shape, y_shape, self.name)
  File "/home/xxxlab/anaconda2/envs/mindspore/lib/python3.8/site-packages/mindspore/ops/_utils/utils.py", line 70, in ge
t_broadcast_sha
pe
    raise ValueError(f"For '{prim_name}', {arg_name1}.shape and {arg_name2}.shape are supposed "
ValueError: For 'Mul', x.shape and y.shape are supposed to broadcast, where broadcast means that x.shape = 1 or -1 or
y.shape = 1
or -1 or x.shape = y.shape, but now x.shape and y.shape can not broadcast, got i: -3, x.shape: [16, 2, 64, 64], y
.shape: [16, 64
, 64, 64].<hr/>2 原因分析以及解决办法

当时真的无比疑惑,为什么split出来的维度不是自己想要的呢?还以为输入的维度就错了,从输入开始debug,结果发现前面都没问题,是split出问题了。
一开始我是通过pytorch-mindspore的对照表进行算子映射的。其中torch.split与mindspore.ops.Split相映射,且备注没有额外信息,我自然就以为他们的参数是一样的。但其实不然,翻阅pytorch和mindspore文档就可以知道torch.split中除了tensor和dim的参数是

  • split_size_or_sections (int) or (list(int)) – size of a single chunk or list of sizes for each chunk
而mindspore中除了tensor和dim的参数是

  • output_num (int) - 指定分割数量。其值为正整数。默认值:1。
    相对而言,mindspore的参数更好操作和理解,而pytorch还需要自己额外计算,所以在迁移时不能单纯把参数复制过来,还要看是否能相对应上。
3 总结

迁移时要勤翻pytorch和mindspore api的文档,除了利用mindconvert进行自动映射外,还需要注意一下不支持算子的映射。
回复

使用道具 举报

0

主题

3

帖子

5

积分

新手上路

Rank: 1

积分
5
发表于 2025-2-25 01:01:27 | 显示全部楼层
佩服佩服!
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

云顶设计嘉兴有限公司模板设计.

免责声明:本站上数据均为演示站数据,如购买模板可以上DISCUZ应用中心购买,欢迎惠顾.

云顶官方站点:云顶设计 模板原创设计:云顶模板   Powered by Discuz! X3.4© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表